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ABSTRACT
Single image dehazing is an ill-posed problem that requires as-
sumptions, priors and constraints to solve. In this paper, boundary
constraint utilizing median filter has been proposed on the image
radiance for the rough estimation of transmission-map in haze
images. Furthermore, for the refinement of estimated transmission-
map, the proposed method use a multi-dimensional feature space
that uses nearest neighborhood optimization under the framework
of non-local principle. Experimental results manifest that proposed
method is effective and results in visually appealing dehaze im-
ages that can be useful for subsequent user or computer based
application.
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1 INTRODUCTION
In recent years there is an increasing interest in vision and graphics
communities to dehaze images by using a minimal input (i.e. sin-
gle image). Under inclement weather conditions, when images are
captured by digital devices, light after reflecting from an object is
absorbed and scattered in the atmosphere before it reaches the cam-
era. This is due to the particles suspended in the air in the form of
dust, smoke, and haze. These particles results in ‘direct-attenuation’
and ‘air-light contribution’ [1], which play their role collectively,
to degrade the visibility and contrast of an image. Thus, it is de-
sired to develop an effective restoration technique that can dehaze
images and recovers perceptual image quality for computer vision
application used for object recognition, tracking, and navigation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICVGIP 2018, December 18–22, 2018, Hyderabad, India
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6615-1/18/12. . . $15.00
https://doi.org/10.1145/3293353.3293431

Amethod that has been explored in recent years for single image
dehazing is proposed by He et al.[2] and known as dark channel
prior (i.e. DCP). Although, the DCP technique is able to achieve
nice dehazing results, but it is very time consuming and thereby
limiting their application in real-time dehazing. Furthermore, it
also features halo-artefacts around complex-structures and sky-
regions in haze images. To overcome the shortcomings of DCP,
some improved algorithm have been proposed in [3]-[15]. To speed
up the dehazing, Tripathi et al. [4] replace the time consuming soft-
matting with anisotropic-diffusion, but the method often results
in inferior performance compared to He et al.[2]. Similarly, Meng
et al. [5] developed a regularization based dehazing technique for
single images. This method over-estimates the haze contribution
and therefore, produce saturated images. Baig et al. [6] improves
the Meng et al. [5] method, using quad tree decomposition and
entropy based weighted regularization.

Zhu et al. [7] used machine learning approach to model the
scene depth and creates color-attenuation-prior (i.e. CAP). This
prior estimate the haze contribution by calculating the difference
between image brightness and saturation component. Although, the
method is fast owing to the use of guided filter, but its performance
depends on the accuracy of estimated scene transmission, which is
difficult to achieve when the prior becomes invalid.

Tang et al. [8] use haze-relevant features such as dark channel,
hue disparity, local max saturation, local max contrast, and then
employed random forest to learn the correlation between haze-
relevant features and medium transmission. This method often
produce poor dehazing results as these features are not efficient
enough. Fattal et al. [9] estimate the transmission in haze images
using the concept of color-line. This method is based on the obser-
vation that haze environment fades the local colors of the image,
and shift them towards air-light. Cai et al. [10] dehaze images using
machine learning framework and develop dehazenet that uses CNN
for the transmission-map estimation. Berman et al. [11] improve
the dehazing using a non-local method, where colors of a haze
image form clusters in the RGB space. These cluster are then used
to form haze-lines for the estimation of transmission of different
pixels.

Besides the above dehazing methods, many other interesting
dehazing algorithms were also proposed such as [12],[13],[14],[15].
The most recent work is proposed by Bui et al. [12], which uses
color ellipsoid prior for dehazing.

The remainder of the paper is organized as follows. We review
a brief background of optical model in section II, followed by de-
scription of DCP approach. Our dehazing approach is detailed in
section III. Experimental results are discussed in section IV. Finally,
concluding remarks are provided in section V.
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2 BACKGROUND
In this section, we will briefly discuss the optical model and dark
channel prior used for the dehazing of outdoor images.

2.1 Optical model
The optical model [1]-[15] widely used to describe the formation
of hazy images, is described as follows:

I (x) = J (x)t(x) + air (1 − t(x)) (1)

t(x) = e−βd (x ) (2)
where, I (x) is the intensity of observed haze image, J (x) is the ra-
diance of haze-free image, air is the global air-light, t(x) is the
medium transmission-map. The transmission-map t(x) is a func-
tion of atmospheric attenuation coefficient (β) and distance d(x)
between the camera and the scenery object. On putting the value
of t(x) in Eq. (1):

I (x) = J (x)e−βd (x ) + air (1 − e−βd (x )) (3)

In Eq. (3), J (x)e−βd (x ) is called ‘direct attenuation’ which exponen-
tially reduce the scene radiance in proportional to the distance, and
air (1 − e−βd (x )) is called the ‘local air-light’ which fades the color
and adds whiteness in the scene. Intuitively, the image received
by the observer is the combination of the attenuated version of
underlying scene radiance with an additive air-light. Since I (x) is
known, the ultimate goal of dehazing is to recover J (x), as:

J (x) =
I (x) − air

e−βd (x )
+ air (4)

The restoration of scene radiance J (x), is a highly ill-posed inverse
problem, because it requires us to recover air and t(x), using only
a single image I (x). In order to find the solution of this ill-posed
problem, we need to rely on some constraints, priors, and assump-
tions.

2.2 Dark channel prior
The DCP [2] is based on the property of “dark pixels", which have
very low intensity in at least one color channels of an outdoor
haze-free images. Mathematically, the DCP for a haze-free image
J (x) is calculated as follows:

JDark (x) = min
y∈Ωr (x )

(
min

c ∈{r,д,b }
Jc (y)

)
(5)

where, x and y represents the pixels locations, Ωr (x) represents an
image (r × r ) local patch centered at x , Jc is the cth color-channel,
c ∈ (r ,д,b), andmin is a minimum filter.

2.3 Estimation of transmission-map
For the estimation of transmission-map t(x), it is assumed that
air-light (air ) is given and the value of t(x) in a local-patch Ωr (x)
is constant. On calculating the DCP value on both side of Eq. (1),
and normalized by (air ), we have:

min
y∈Ωr

(
min
c

(
Ic (x)

acir

))
= min

y∈Ωr

(
min
c

(
Jc (x)

acir

))
t̃(x) + 1 − t̃(x) (6)

According to the DCP [2], the dark channel of J (x) ≈ 0

min
Ωr

(
min
c

(
Jc (x)

acir

))
= 0 (7)

On putting Eq.(7) into Eq. (6), we have:

t̃(x) = 1 −min
Ωr

(
min
c

(
Ic (x)

acir

))
(8)

In order to keep the natural appearance after dehazing, He et al. [2]
used a constantw(0 < w ≤ 1) into Eq.(8) as:

t̃(x) = 1 −w

{
min
Ωr

(
min
c

(
Ic (x)

acir

))}
(9)

where,w is set to 0.95. The abrupt transitions in t̃(x) can be smoothed
out through a soft-matting technique[16] as optimal transmission
t(x) and used in Eq.(4) for radiance recovery.

2.4 Discussion
Despite good performance, the DCP has few limitations as:

2.4.1 Small patch size: The DCP shows good dehazing results
when the local color distribution in the background and foreground
region of an image are non-overlapped. But this theory fails, espe-
cially, when an image local-color blends with air-light. Therefore,
to relieve the problem and to satisfy the assumption of color-model,
the patch size Ωr (x) kept unavoidably small in DCP.

2.4.2 Inefficient transmission estimation: Eq. (9) leads to the
false estimation of transmission-map t̃(x), especially when intensity
of any bright object in haze images becomes similar to the intensity
of air-light (air ) as:

min
Ωr

(
min
c

(
Jc (x)

acir

))
→ 1 and t̃(x) → 0 (10)

Eq. (10) implies that DCP fails to obtain the scene transmission,
which is the key for efficient dehazing. Furthermore, the use ofmin
operator in Eq. (9) discard the edges information, sharply decrease
the image resolution and therefore, results in a blurry transmission-
map.

3 PROPOSED METHOD
In this paper, we propose a dehazing scheme using boundary con-
straint and nearest neighborhood optimization.

3.1 Estimation of air-light
For the air-light estimation, we use He et al. [2] approach as:

(a) First, calculate the DCP of a haze image using Eq. (5).
(b) Second, select the top 0.1% brightest pixels in DCP.
(c) Third, select the pixels withmax intensity in haze-image (I )

as air-light (air ).

3.2 Estimation of transmission-map
In order to find an initial estimate of transmission-map t(x), we
can rewrite Eq. (1) as:

J (x) =
I (x) − air (1 − t(x))

t(x)
(11)

To impose the boundary constraint, it is assumed that the normal-
ized intensity of each color channel is within the range [0, 1].

0 ≤
Ic (x) − acir (1 − t(x))

t(x)
≤ 1 (12)



Single image dehazing using image boundary constraint and nearest neighborhood optimizationICVGIP 2018, December 18–22, 2018, Hyderabad, India

The solution of Eq. (12) results in the two equations as:

t1(x) ≥ 1 −
Ic (x)

acir
and t2(x) ≥

Ic (x) − acir
1 − acir

(13)

The initial estimation of transmission-map ti (x) can be given by:

ti (x) = max {t1(x), t2(x)} (14)

The transmission-map in a local neighborhood (Ω) is obtained via:

t̂(x) = med
yϵΩr (x )

(
max

zϵΩr (y)
(ti (z))

)
(15)

where, Ωr (x) and Ωr (y) represent an image (r × r ) local patch
centered at pixel location x and y, respectively. Themed operator
in Eq. (15) avoids to decrease the perceptible resolution sharply
unlike in [2] and performs a non-linear filtering operation, which
not only suppresses the noise, but also preserves the edges, while
estimating the transmission-map.

3.3 Transmission-map refinement
The rough estimation of transmission-map t̂(x) contains inter-
region transitions, which may produce block-artefacts, if the same
t̂(x) is used for the J (x) recovery. Hence, it is necessary to refine the
t̂(x), so that we can smoothed out the abrupt transition. The method
used for the refinement of t̂(x) is motivated by the assumption that
pixels sharing the same appearance must share the same transmis-
sion value [17]. Therefore, to measure the similarity, we developed
a 9-dimensional feature space, which uses spatial variations, and
edges variations as an additional feature to color as:

ϕx =
[
p q h s v |Ip | |Iq | |Ipp | |Iqq |

]
x

(16)

where, I = [h, s,v] represents the pixels value in the HSV color
space, (p,q) represents the spatial coordinates of pixel (x). Ip , Iq ,
Ipp , and Iqq represent the first and second-order derivative of image
intensity in the horizontal and vertical directions. To enforce the
inter-region smoothness in t̂(x), a pixel (x) is connected to its K-
nearest neighbors y1,y2. . . ... . . .yK with weights[18] as:

w(x ,y) = 1 −
∑N
x=1 ∥ ϕx −

∑K
m=1 ϕym ∥

σ
(17)

where, y is a neighboring pixel of x , N is the total number of pixels,
σ is the least upper bound

∑N
x=1 ∥ ϕx −

∑K
m=1 ϕym ∥ to make values

of w(x ,y) in [0,1]. The refined transmission-map t(x) is obtained
by minimizing the following cost function:

E = ξ
∑
xϵV

(
tx − t̂x

)2
+

N∑
x=1

©«
∑
yϵNx

wxy
(
tx − t̂x

)2ª®¬ (18)

Here, the first term ensures that the refined transmission-map t(x)
is consistent with the constraint of t̂(x), whereas the second term
ensures that the neighboring pixels must share similar transmission
values, ξ is a parameter to keep the balance between these two
terms. Here, V represents a set of pixels whose initial transmission
estimation (t̂) is of high confidence, and Nx is the set of neighbor
of pixels x . To facilitate computation, we can rewrite Eq. (18) as:

E = ξ
(
t − t̂

)T
Γ
(
t − t̂

)
+ tT LT Lt (19)

where,

Lxy =


wxx

−wxy

0

if x = y
if x and y are neighbors

otherwise
where, wxx =

∑
yϵNx wxy , Γ is a N × N diagonal matrix with

Γxx = 1 if xϵV , else 0. The optimal solution of Eq. (19) is obtained
by solving the following sparse linear system [19]:

t =
(
LT L + ξU

)−1
t̂ (20)

where, U is an identity matrix of same size as L. An example of
transmission-map refinement is shown in Fig. 1. The estimated
transmission of a haze image is shown in Fig.1 (b), which leads
to halo-artifacts while dehazing (see Fig.1 (c)). In Fig.1 (d), we can
observe that the irregularities formed while estimating scene trans-
mission are suppressed and smoothed out effectively, which leads
to the efficient dehazing and recovery of true scene radiance.

3.4 Image recovery
Once the air-light (air ) and transmission-map t(x) are obtained,
we can recover the scene radiance J (x) by using:

Jc (x) =
Ic (x) − acir

[min{max{t(x), 0.1}, 0.9}]δ
+ acir (21)

For avoiding instability, we also restrict the value of the transmission-
map t(x) between 0.1 and 0.9. An exponent parameter δ is also
used for the fine detailing of dehazing effects.

4 EVALUATION AND RESULTS
In experiment, we validate the performance of proposed method on
outdoor haze images. The proposed method was implemented in
Matlab R2017b and was simulated on a PC with Intel(R) Core(TM)
i7-3770 CPU@ 3.40GHz, 3401 MHz, 4 Core(s), 8.00GB RAM. The
parameter r , k , ξ , and δ are fixed as 15, 12, 10−4 and 0.7 in our
experiment. The qualitative comparison of dehazing results on few
real-world haze images with other state-of-the-art methods are
shown in Fig. 2. To do a fair comparison, we disabled the complex
post-processing enhancement operations, due towhich the reported
results might be slightly different from others. The reader is urged
to zoom into the pdf file to view the images more carefully. Upon
zooming, one can observe, most of the haze effects are removed
by [2], [5], [7], [10], and [11] respectively. But visibility, colors,
and details are not good enough. It can be seen that in Fig. 2(b),
He et al. [2] results significantly suffer from darkness and edge-
distortions (i.e. for the swan image, background wall is hard to
be seen. Likewise, for the hostel image, bricks and leaves appears
much darker than it should be. Similarly, for the logo image, one can
observe that fonts are distorted). Meng et al. [5] method produce
over-enhanced results due to the over-estimation of haze thickness
(see Fig. 2(c)). Zhu et al. [7] avoid the over-enhancement, but final
results still appear hazy and distorted (i.e. background wall in the
swan image appears hazy, while fonts appears distorted in the logo
image). Cai et al. [10] results show similar dehazing limitations as
Zhu et al. [7] in Fig.2 (e). The Berman et al. [11] method is able
to produce sharp dehazing results, but it also produce color-shifts
(i.e. see the swan and tree in the first image, and fonts in the third
image). In contrast, our proposed method is able to dehaze image
well and restores the natural visibility of the scene.
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(a) (b) (c) (d) (e)
Figure 1: An example of transmission-map refinement using proposed approach. (a) Real haze image. (b) Estimated
transmission-map. (c) Dehazing result without transmission-map refinement. (d) Refined transmission-map. (e) Final dehaz-
ing result. (Best viewed on high-resolution display with zoom-in).

(a) (b) (c) (d) (e) (f) (g)
Figure 2: Qualitative comparison of dehazing results with other state-of-the-art methods. (a) Real haze images. (b) He et al.
[2] (c) Meng et al. [5] (d) Zhu et al. [7] (e) Cai et al. [10] (f) Berman et al. [11] (g) Our proposed method. (Best viewed on high-
resolution display with zoom-in).

Table 1: Dehazing efficacy of the compared methods obtained via Qe , Qд and Qo [20]

Image Metric He et al. [2] Meng et al. [5] Zhu et al. [7] Cai et al. [10] Berman et al. [11] Ours

Swan Qe 0.30 0.35 0.27 0.20 0.42 0.51
Qд 1.56 1.60 1.09 1.20 2.13 2.45
Qo 0.00 0.00 0.02 1.59 6.20 0.00

Hostel Qe 0.28 0.11 0.18 0.16 0.21 0.44
Qд 1.30 1.38 0.97 1.08 2.01 4.63
Qo 0.00 0.00 0.00 0.92 2.62 0.00

Logo Qe 0.24 0.23 0.27 0.24 0.09 0.44
Qд 1.16 1.87 1.44 1.54 2.50 1.43
Qo 0.01 0.00 0.12 1.66 3.85 0.00

Bold values indicate the efficient dehazing results, whereas underscore value marks the inferior dehazing results.

To evaluate the dehazing efficacy of each compared method,
we adopted three well known quantitative metrics- Qe , Qд and
Qo [20]. Specifically, the Qe metric calculates the ratio of visible
edges between the dehazed image and the hazy image. Since the
dehazed images tends to have sharper details than the hazy image,
it is considered that the higher the Qe value the better the efficacy.

The Qд metric precisely measure the sharpness, and calculates the
average gradient before and after dehaze images. Similarly, higher
theQд value, better the efficacy. Finally, theQo metric estimates the
ratio in which the visible edges of the dehaze image are saturated
as white or smeared as black. As Qo accounts for the saturation,
the smaller the Qo value, the better the dehazing results. Table-1
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summarizes the dehazing results for images shown in Figure 2. From
this table, it can be observed that both Cai et al. [10] method and
Berman et al. [11] method dehaze images by producing maximum
value of Qo , among the compared methods. The performance of
proposed method is competent as it significantly improves image
visibility, while preserving the natural appearance.

5 CONCLUSION
In this paper, we have addressed the inverse problem of dehazing
in outdoor images and develop a novel approach that uses median
filter inspired boundary constraint on the scene radiance for the
rough estimation of transmission-map in haze images. In addition,
proposed method usea a 9-dimensional feature space, where spatial
variation and edges variation is used as an additional feature to
color for the refinement of transmission-map under the framework
of non-local principle. Experimental results with the state-of-the-
art methods demonstrate that the proposed method effectively
distinguish dehazing effects, without causing any visible artifact,
and results in overall improvement in image visibility (in terms of
both the visual effect and quantitative assessment) than previous
dehazing methods in literature. In future works, we will explore
our method for video dehazing.
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