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A B S T R A C T

Unmanned aerial vehicle system (UAVs) imaging has become a challenging area of research due to the dynamic
atmospheric environment. The images captured by UAVs are often deteriorated by factors such as clouds
occlusion, poor atmospheric illumination, and limited capability of the imaging system. To tackle problems,
this paper presents a novel visibility restoration scheme for UAVs images by considering the following two
assumptions: (1) The actual scene radiance of a UAVs image is bounded. (2) Pixels sharing the same appearance
must have the same transmission value in a local neighborhood. Inspired by above assumptions, an image
boundary constraint utilizing the median filter has been imposed on the RGB channel for the rough estimation
of transmission-map in aerial images. Furthermore, a graph-model based optimization technique has been
used for the transmission-map refinement. The experimental results demonstrate the efficiency of the proposed
method in terms of metrics correspond to the human-visual-system (HVS).
1. Introduction

The aerial images captured from airplanes or unmanned aerial
vehicle system (UAVs) records the ever-changing cultural and natural
features on the earth’s surface. The aerial images capture several geo-
graphical features such as mountains, canyons, flat-lands, and reveal
several earth resources such as lakes, rivers, vegetation, mountains,
forest, etc. UAVs based imagery provides a valuable source of in-
formation for both consumer and computational photography. But
unfortunately, these images are often constrained by many negative
factors such as occlusion from clouds, poor atmospheric illumination,
unpleasant weather conditions, and limited imaging capability of the
UAVs. All these undesirable factors play their role collectively, to
degrade the colorfulness, sharpness, contrast, and brightness of an
aerial image. The visual quality of aerial image plays a crucial role in
many types of scientific research and vision-based applications such as
surveillance and geospatial mapping [1], city planning, remote sensing,
disaster monitoring, agriculture land monitoring [2], and road traffic
regulation [3].

In UAVs photography, the atmospheric turbidity varies with alti-
tude, weather, and behavior of suspended particles. However, due to
the long distance between the high flying camera and the ground,
a significant amount of haze always prevails in the atmosphere. The
presence of haze obscure vision to a great extent and degrades the
perceptual image quality. The effect of light scattering through haze
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particles results in eminent brightness, lessen sharpness, diminished
color, and weakened contrast in the captured images. Haze removal,
which is also called dehazing, is an integral part of visibility restoration.
Over the past decade, significant effort has been made for enhancing
the visibility in aerial images. These methods can be divided into two
major categories: image enhancement(IE) and image restoration(IR).

In the first category, the most commonly used IE methods are based
on the advanced histogram equalization and its variants [4,5], retinex
theory [6,7], gamma correction [8], nonlinear intensity transforma-
tion function (NIT) [9], and wavelet analysis [10]. As color, contrast
and brightness are important visibility factors in aerial images, Fu
et al. [5] improved visibility by maximizing the image colorfulness,
contrast, and minimizing the brightness using regularized-histogram-
equalization and discrete-cosine-transform (RHE-DCT). The results are
visually compelling but dark and saturated in some local regions of
the image. Jang et al. [6] developed a method based on sub-band
decomposed multiscale retinex with hybrid intensity transfer function
to improve the visibility in remote sensing satellite and aerial images.
Yong et al. [10] used the wavelet transform to decompose haze into
different spatial layers. This technique requires an additional haze-free
image of the same scene as a reference for efficient dehazing. Therefore,
it cannot be used when a single aerial image is available as an input. In
contrast, Kwok et al. [11] used a series of independent filters to improve
colors, saturation, and contrast in aerial images. This method produces
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results with vivid colors and sharp object boundaries, but using too
many filters on one image is computationally intensive and often results
in unnatural-looking images. Sidike et al. [12] used adaptive trigono-
metric transformation function (i.e., ATTF) for visibility enhancement
in aerial images, but it mostly causes over-saturation.

The IE methods [4–12] fails to consider the absorption and scat-
tering effects of the atmosphere. Therefore, they often result in color-
distortion and over-saturation, as they are unable to maintain the color
fidelity under cloudy or smoky conditions. In short, IE methods are not
sufficient enough for dehazing as they were developed for enhancement
only. Limitations of the IE methods [4–12] motivate the researchers
to develop new IR approaches. In contrast to IE, the IR methods first
study the optical process of image formation under the atmospheric
imaging model and make use of priors, assumptions, and constraints
for the visibility recovery.

In the IR category, the majority of methods are based on simple yet
effective, dark channel prior (i.e., DCP), proposed by He et al. [13].
In [14], Long et al. performed the dehazing of remote sensing images
by using the DCP and low pass Gaussian filter. In [15], Cheng et al.
combined the DCP with a guided filter for the dehazing of an aerial
image. In [16], Singh et al. combined the DCP with fourth-order partial
differential equations based trilateral filter (FPDETF) to restore the
visibility in satellite images. Similarly, Huang et al. [17] used DCP
under layered scattering framework to restore visibility in remote sens-
ing images. The DCP based dehazing techniques [13–17] are visually
compelling, but they are likely to introduce artifacts, especially when
DCP assumptions fail for the white and sky-regions in aerial images.

To overcome the shortcomings of DCP, Zhao et al. [18] improves
the DCP with a bright region filling process to alleviate the color
distortion in aerial images. Similarly, Carr and Hartley [19] improved
the DCP with a piece-wise planar geometry prior using the energy
minimization framework. Zhu et al. [20] used a machine learning
approach to model the scene-depth and created color attenuation prior
(i.e., CAP) for the rough estimation of depth-map. Berman et al. [21]
proposed a non-local method for dehazing. Bui et al. [22], introduced
color ellipsoid prior for dehazing. Unlike the above methods, which use
different priors for dehazing, Meng et al. [23] developed BCCR, that
uses weighted L1-norm based contextual regularization to recover the
unknown transmission-map in hazy images.

Recently, there has been a flurry of works that utilize neural net-
works, deep learning frameworks, and hybrid methods [24–30] to learn
the transmission-map directly from the training data. Tang et al. [24]
used haze relevant features such as dark channel, hue disparity, local
max saturation, and local max contrast in a random-forest framework
to learn the transmission-map. Cai et al. [25] presented dehazenet,
which is an end-to-end trainable system that uses CNNs and BReLU for
the transmission-map estimation. Similarly, Ren et al. [26] presented
a multi-scale convolutional neural network (MSCNN) that comprises
of a coarse-scale network to predict the transmission-map in haze
images, and a fine-scale network to obtain the detailed transmission-
map. Recently, Li et al. [27] proposed an all-in-one dehazing network
called AOD-Net, which can jointly learn the transmission-map, and
air-light for dehazing. Likewise, Zhang et al. [28] proposed a densely
connected pyramid dehazing network (DCPDN), which can be jointly
optimized to learn the transmission-map, atmospheric light, and de-
hazing all together. More recently, Yang et al. [29] introduced a
learning-based deep network called proximal dehaze-net for dehazing.
In [30], Du et al. propose a novel deep residual learning (DRL) network
for dehazing.

Besides the above dehazing methods, many other interesting al-
gorithms presented in [31–35] have shown significant advantages for
dehazing terrestrial images. Despite the remarkable progress in de-
hazing, there is still room for improvement, especially in terms of
the quality measure. This paper presents an assumption based novel
visibility restoration scheme for UAVs images. The contributions of the
2

paper are the following: p
1. By considering the first assumption, boundary constraint utiliz-
ing the median filter has been imposed on the RGB color channel
for the rough estimation of transmission-map in UAVs images.

2. Inspired by Closed-matting [36] and KNN-matting [37], both
local and non-local information has been used, collectively, in
the second assumption for the refinement of transmission-map
using a graph model.

3. To solve the color-cast problem, a color correction approach
based on the gray-world assumption has been used while recov-
ering the scene radiance.

The remainder of this paper is organized as: In Section 2, a brief
background of the ‘atmospheric imaging model’ and ‘dark channel prior
(DCP)’ is presented. Section 3, outlines some of the major limitations of
DCP for UAVs images. Section 4, describes the proposed approach in de-
tail. Experimental results are shown in Section 5. Finally, a conclusion
is drawn in Section 6.

2. Problem formulation and motivation

2.1. Atmospheric imaging model

The imaging model widely used to describe the formation of haze
images [13–22] is expressed as:

𝐼(𝑥) = 𝐽 (𝑥)𝑡(𝑥) + 𝐴(1 − 𝑡(𝑥)) (1)

𝑡(𝑥) = 𝑒−𝛽𝑑(𝑥) (2)

here, 𝐼(𝑥) is the intensity of an observed image degraded by haze, 𝐽 (𝑥)
s the radiance of a haze-free image, 𝐴 is the global air-light, 𝑡(𝑥) ∈ [0, 1]
s the medium transmission-map, (𝛽) is the attenuation coefficient of the
tmosphere and 𝑑(𝑥) ∈ [0,∞) is the scene-depth or distance from the
amera to the scene being targeted. On putting the value of 𝑡(𝑥) into
q. (1):

(𝑥) = 𝐽 (𝑥)𝑒−𝛽𝑑(𝑥) + 𝐴(1 − 𝑒−𝛽𝑑(𝑥)) (3)

n Eq. (3), the term 𝐽 (𝑥)𝑒−𝛽𝑑(𝑥) is called the direct attenuation, which
ndicates the amount of attenuation that actual scene radiance faces
efore reaching the camera. The term 𝐴(1 − 𝑒−𝛽𝑑(𝑥)) is called the local
ir-light, which fades the color and adds whiteness in the scene. It is
orth noting, for homogeneous weather (𝛽) is treated as a constant
nd 𝑑(𝑥) becomes the most important term for the transmission-map
stimation. Moreover, in the ideal case, the range of 𝑑(𝑥) is [0,+∞) as
he UAVs can be either very close or too far from the target object.
onsidering Eq. (3), when the distance between the scenery object and
he camera is higher, the observed image is dominated by the air-light
s:

(𝑥) = 𝐴, when 𝑑(𝑥) → ∞, 𝑡(𝑥) → 0 (4)

imilarly,

(𝑥) = 𝐽 (𝑥), when 𝑑(𝑥) → 0, 𝑡(𝑥) → 1 (5)

q. (4) implies that when a scenery object exists at a large distance from
he UAVs camera (𝑒−𝛽𝑑(𝑥) ≈ 0), the observed image (𝐼) is the most haze-
paque due to the stronger air-light effect. Likewise, Eq. (5) implies
hat for short distance objects, the observed image is nothing but the
ctual scene radiance, and does not require any dehazing. Practically,
oth the scenario given by Eqs. (4) and (5) are not possible in aerial
maging. Therefore, we need to compute both 𝐴 and 𝑡(𝑥) independently,
o recover the actual scene radiance 𝐽 (𝑥). In order to simplify this
ll-posed inverse problem, it is essential to consider some constraints,

riors, and assumptions.
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2.2. Dark channel prior

The DCP [13] is based on the property of ‘‘dark pixels’’, which have
a very low intensity in at least one color channel of an outdoor haze-free
image. Mathematically, the DCP for a haze-free image 𝐽 (𝑥) is given by:
𝐷𝑎𝑟𝑘(𝑥) = min

𝑦∈𝛺𝑟(𝑥)

(

min
𝑐∈{𝑟,𝑔,𝑏}

𝐽 𝑐 (𝑦)
)

(6)

here 𝛺𝑟(𝑥) is an image (𝑟× 𝑟) local patch centered at pixel 𝑥, and 𝑚𝑖𝑛
is a minimum filter. For the estimation of transmission-map 𝑡(𝑥), it is
ssumed that the air-light (𝐴) is known and Eq. (1) is normalized by
he air-light (𝐴) as:

𝐼𝑐 (𝑥)
𝐴𝑐 =

𝐽 𝑐 (𝑥)𝑡(𝑥)
𝐴𝑐 + 1 − 𝑡(𝑥) (7)

n applying DCP [13] on both sides of Eq. (7):

in
𝛺𝑟

(

min
𝑐

(

𝐼𝑐 (𝑥)
𝐴𝑐

))

= min
𝛺𝑟

(

min
𝑐

(

𝐽 𝑐 (𝑥)
𝐴𝑐

))

𝑡(𝑥) + 1 − 𝑡(𝑥) (8)

ccordingly DCP [13], the dark channel of haze-free image 𝐽 (𝑥) ≈ 0:

in
𝛺𝑟

(

min
𝑐

(

𝐽 𝑐 (𝑥)
𝐴𝑐

))

= 0 (9)

After putting Eq. (9) into Eq. (8), 𝑡(𝑥) is given by:

𝑡(𝑥) = 1 −𝑤
{

min
𝛺𝑟

(

min
𝑐

(

𝐼𝑐 (𝑥)
𝐴𝑐

))}

(10)

Unfortunately, the results may appear artificial when haze is removed
completely. Thus He et al. [13] adds a constant 𝑤(0 < 𝑤 ≤ 1) in Eq. (10)
to preserve little haze for distant objects. The 𝑡(𝑥) estimated by Eq. (10)
s further refined as optimal transmission 𝑡(𝑥) through a filtering tech-

nique [36]. Finally, the scene radiance 𝐽 (𝑥) is recovered via:

𝐽 𝑐 (𝑥) =
𝐼𝑐 (𝑥) − 𝐴𝑐

max{𝑡(𝑥), 0.1}
+ 𝐴𝑐 , 𝑐 ∈ {𝑟, 𝑔, 𝑏} (11)

or avoiding division by zero, He et al. [13] restricted the value of the
ransmission-map 𝑡(𝑥) by 0.1.

. Limitations of DCP for UAVs image

Despite the good performance for dehazing outdoor images, the DCP
how limitations for the UAVs images as:

.1. Inefficient transmission estimation

Due to the use of 𝑚𝑖𝑛 operator in Eq. (10), a lower intensity value in-
icates that the captured area contains thin haze, Conversely, a higher
alue indicates thick haze. However, this is not true for UAVs haze
mages. Actually, in aerial images, due to the long distance between
he camera and the scene, the intensity of the red color channel is
ttenuated much faster than the green and blue channel. Therefore, a
ower intensity in the red channel may mislead the DCP to perceive a
hin haze layer in aerial images, which is not true. Furthermore, when
he intensity of any bright object in aerial images 𝐼(𝑥) becomes similar

to the intensity of air-light (𝐴) then, according to Eq. (10):

min
𝛺𝑟

(

min
𝑐

(

𝐼𝑐 (𝑥)
𝐴𝑐

))

→ 1 and 𝑡(𝑥) → 0 (12)

Eq. (12) implies that DCP fails to obtain the estimation of scene
transmission-map, which is the key to efficient dehazing.

3.2. Color distortion

The UAVs haze images usually exhibit different color distortion in
their RGB histogram, due to the long distance between the camera and
the scene. Fig. 1 shows the histogram distributions of natural scene
images and UAVs haze images. Intuitively, the histogram distributions
3

of a natural-scene image are consistent and wider while the histogram
distributions of UAVs haze images are inconsistent (e.g., the histogram
of the red channel shifted towards the darkest side, followed by the
blue channel and then green channel). It happens because the red color
of the spectrum has the longest wavelength, causing it to be scattered
and absorbed extensively by atmospheric particles, while the blue color
wavelength is comparatively shortest, causing it to travel the maximum
distance in the air. Therefore, UAVs images often show a bluish-
greenish tone. However, owing to use an assumption in DCP [13] that
each color channel of the input image has similar color distributions in
their histogram, the UAVs images features serious color-shift problem,
when the same restoration scheme given in Eq. (11) used for each
color channel. The histogram distribution of UAVs images inspires us
to re-structure Eq. (11) to achieve better results.

4. Proposed scheme

The proposed method is based on the following two assumptions:
(1) The actual scene radiance of an aerial image is always bounded such
that the intensity of each color channel falls in the range [𝐶0 ≤ 𝐽 𝑐 (𝑥) ≤
1]; (2) Pixels sharing the same appearance must have the same value

n the transmission-map (i.e., 𝑡(𝑥) is locally constant).

.1. Estimation of air-light

Air-light fades the colors due to the addition of whiteness in the
cene and its effect varies sharply along with the distance between
he UAVs camera and the ground scenery object. In UAVs imaging,
qs. (4) and (5) implies that the influence of air-light is stronger in
he regions of deeper-depth and weaker in the region of shallow-depth.
ince the air-light contribution increases with the increment in scene-
epth, its value can be estimated by detecting the farthest pixel in the
aze-opaque regions of the image. In other words, pixels belonging to
he haze-opaque regions are often identified as the brightest ones and
ontains a fair amount of air-light (𝐴) as:

𝑐 = 𝐼𝑐
(

𝑎𝑟𝑔 max
𝑥∈𝑃0.1%

(

min
𝑦∈𝛺𝑟(𝑥)

(

min
𝑐∈(𝑟,𝑔,𝑏)

𝐼𝑐 (𝑦)
)))

(13)

n Eq. (13), the air-light contribution is determined by selecting the
ixels corresponding to the top 0.1% of brightest pixels in the dark
hannel of an aerial image. Then among these brightest pixels, the
ne corresponding with the highest intensity in the aerial image (𝐼) is
hosen to provide the estimation of air-light. However, this approach is
ot suitable in a situation where scenery objects are brighter than the
ir-light. Fig. 2 shows an example of global air-light estimation.

.2. Boundary constraint for transmission estimation

Under aerial imaging, Eq. (4), implies that the intensity of pixel
(𝑥) belonging to the region with a distant view will be pushed to-
ards air-light (𝐴). Therefore, in order to find an initial estimation of

ransmission-map 𝑡(𝑥) for any pixel (𝑥), the main requirement is the
xtrapolation of 𝐽 (𝑥) which cannot cross over the boundary of RGB
olor channel and must be located within 𝐶0 and 𝐶1. So, Eq. (1) can be
ewritten as [38]:

𝑏(𝑥) =
𝐼(𝑥) − 𝐴(1 − 𝑡(𝑥))

𝑡(𝑥)
(14)

Now, by considering our first assumption that actual scene radiance
of a haze image is always bounded such that the intensity of each
color channel falls in the range [𝐶0 ≤ 𝐽 𝑐 (𝑥) ≤ 𝐶1], where 𝐶0 and 𝐶1
are two constant vectors relevant to the input image. Furthermore, to
simplify the calculation procedure, the intensity of each color channel
is normalized within [0, 1], which in turn, imposes the boundary
constraint on Eq. (14) as:

0 ≤ 𝐼𝑐 (𝑥) − 𝐴𝑐 (1 − 𝑡(𝑥)) ≤ 1 (15)

𝑡(𝑥)
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Fig. 1. Statistical difference between a terrestrial image dataset and UAVs image dataset. Top row: Terrestrial image dataset and it’s average histogram distribution. Bottom row: UAVs image
dataset and it’s average histogram distribution. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. An example to illustrate the global air-light estimation. (a) Real UAVs haze images. (b) Corresponding Dark channels. (c) The top 0.1% of brightest pixels in the dark channels. (d)
The top 0.1% of brightest pixels is used as the threshold ▵ to obtain dark channel mask. (e) Logical AND of (c)–(d) images to identify most haze-opaque pixels. (f) Pixels mapped to the
input image for air-light estimation. (g) Estimated air-light .
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Fig. 3. Illustration of the effect of patch variation while estimating the transmission-map for haze images. (a) UAVs haze image (top) and terrestrial haze image (bottom). The
transmission-map derived by Eq. (18) with the patch size of (b) 𝛺 = 5 (c) 𝛺 = 11 (d) 𝛺 = 15 (e) 𝛺 = 21.
The solution of Eq. (15) results in the two inequations as:

𝑡1(𝑥) ≥ 1 −
𝐼𝑐 (𝑥)

max (𝐴𝑐 , 𝛷)
and 𝑡2(𝑥) ≥

𝐼𝑐 (𝑥) − 𝐴𝑐

1 − 𝐴𝑐 (16)

where 𝛷 is a small constant to avoid division by zero and 𝐴𝑐 is the
known air-light for each color channel. Based on the above mentioned
solution, the initial estimation of the transmission-map 𝑡𝑖(𝑥) can be
given by:

𝑡𝑖(𝑥) = max
{

𝑡1(𝑥), 𝑡2(𝑥)
}

(17)

To sum up, the initial transmission of the whole image, the transmission
value for each pixel in a local neighborhood is calculated by processing
an initial estimate as:

𝑡(𝑥) = med
𝑦∈𝛺𝑟(𝑥)

(

max
𝑧∈𝛺𝑟(𝑦)

(

𝑡𝑖(𝑧)
)

)

(18)

where 𝛺𝑟(𝑥) and 𝛺𝑟(𝑦) represent an image (𝑟×𝑟) local patch centered at
pixel location 𝑥 and 𝑦, respectively. 𝑚𝑒𝑑 and 𝑚𝑎𝑥 denote the operator
of a median and maximum filter, respectively. The use of 𝑚𝑒𝑑 operator
in Eq. (18) avoids to decrease the perceptible resolution sharply and
performs a non-linear filtering operation, which not only suppresses the
impulsive noise components but also preserves the edge information
while estimating the scene transmission-map.

In Eq. (18), the size of the local patch (𝛺) is the only parameter that
needs to be determined for the estimation of a stable transmission-map.
Although the effect of the size of the local patch is significant, a large
patch-size unnecessarily increases the computational-time and makes
the block-artifact stronger near depth jumps, while a smaller patch-
size could make the dehazing results over-saturated [13]. The impact of
variation of the patch-size on the estimation of 𝑡(𝑥) is shown in Fig. 3.
The top row of Fig. 3(a), corresponds to an aerial image with less
local-texture and dense haze. Therefore, a medium-patch is sufficient
in order to well estimate the foreground and background regions in
the 𝑡(𝑥). However, a terrestrial image with complicated local-texture
and mild haze, shown in the second row of Fig. 3(a), needs a larger-
patch to avoid the false estimation of these regions. It can be observed
from Fig. 3(e), that terrestrial image regions (i.e., the foreground and
background) remain visible even when a large-patch (𝛺 = 21) is used
whereas, UAVs image regions deteriorated for the same patch size.
Therefore, a reasonable value of patch-size (𝛺) needs to be found for
UAVs dehazing.

4.3. Graph model for transmission-map refinement

The transmission-map 𝑡(𝑥) obtained by Eq. (18) is called tri-map
because it contains three class of regions. It can be observed from
Fig. 3[(b)–(e)], especially in the boundary marked by the red color that
three classes of regions exist in 𝑡(𝑥). The foreground region (indicated
by lighter pixels), the background region (indicated by darker pixels),
and unknown region (indicated by gray pixels). If we try to recover
the scene radiance 𝐽 (𝑥) directly using 𝑡(𝑥), the results feature problems
such as false textures and block-artifacts. Hence, it is necessary to refine
the 𝑡(𝑥) to obtain a smooth and sharp transmission-map.
5

The method used for refinement of 𝑡(𝑥) is motivated by the as-
sumption that pixels sharing the same appearance must share the same
transmission value [37]. Using this assumption, the unknown-region
in 𝑡(𝑥) can be partitioned into a known foreground (𝐹 ), and known
background (𝐵) by using the proposed graph model. The illustration of
the graph model is shown in Fig. 4 where red, blue, and gray nodes
represent pixels marked by tri-map as foreground, background, and
unknown, respectively. In the tri-map 𝑡(𝑥), the transmission value for
unknown pixels may reflect the tendency towards either foreground or
background. Thus it is reasonable to associate a confidence value (𝛾)
to indicates whether a pixel belongs to the foreground or background.
The data weights for unknown pixel (𝑥) are defined as:

𝑤𝑥,𝐹 = 𝛾.𝑡(𝑥) and 𝑤𝑥,𝐵 = 𝛾.(1 − 𝑡(𝑥)) (19)

where 𝑤𝑥,𝐹 and 𝑤𝑥,𝐵 define the probability of pixel belonging to the
foreground and background. Eq. (19) implies that a true foreground
pixel must have a higher value of 𝑤𝑥,𝐹 and lower value of 𝑤𝑥,𝐵 , and
vice-versa. Furthermore, to enforce smoothness, each pixel is connected
to the local neighbor (𝑤𝑠𝑝𝑎) [36], non-local neighbor (𝑤𝑘𝑛𝑛) [37], virtual
foreground (𝛺𝐹 ) and to the virtual background (𝛺𝐵) (see Fig. 4(b))
through the use of a weighting function given by:

𝑤𝑥𝑦 = 𝑤𝑠𝑝𝑎(𝑥, 𝑦) +𝑤𝑘𝑛𝑛(𝑥, 𝑦) +𝑤𝑥,𝐹 +𝑤𝑥,𝐵 (20)
𝑤𝑠𝑝𝑎(𝑥, 𝑦)

=
∑

𝑘∣(𝑥,𝑦)∈𝛺𝑘

(

𝛿𝑥𝑦 −
1

|𝛺𝑘|

(

1 + (𝐼𝑥 − 𝜇𝑘)𝑇 ×
(

𝛴𝑘 +
𝜖

|𝛺𝑘|
𝑈3

)−1

(𝐼𝑦 − 𝜇𝑘)

))

(21)

where 𝑦 is a neighbor of 𝑥, |
|

𝛺𝑘
|

|

is the number of pixels in a local-patch,
𝜇𝑘 and ∑

𝐾 are the colors mean and variance in a window (𝛺𝑘), 𝛿 is
Kronecker’s delta function, 𝑈3 is the 3 × 3 identity matrix, and 𝜖 is a
small regularization parameter to control the strength of smoothness.
Furthermore, due to the long distance from the ground, aerial images
usually have an overlapped area of color-distribution. Therefore, to
solve this problem, a multi-dimensional feature space has been used,
which uses spatial and edges variations as an additional feature to
color [39] as:

𝐹𝑥 =
[

ℎ 𝑠 𝑣 𝑝 𝑞 |𝐼𝑝| |𝐼𝑞| |𝐼𝑝𝑝| |𝐼𝑞𝑞|
]

𝑥
(22)

where 𝐹𝑥 represents a 9-dimensional feature vector of pixel 𝑥, 𝐼 =
[ℎ, 𝑠, 𝑣] represents the pixel value in the HSV color space, (𝑝, 𝑞 ∈ 𝑥)
represents the pixel location. 𝐼𝑝, 𝐼𝑞 , 𝐼𝑝𝑝, and 𝐼𝑞𝑞 represent the first
and second-order derivative of the image intensity in the horizontal
and vertical directions. To enforce the inter-region smoothness in 𝑡(𝑥),
pixel 𝑥 is connected to 𝐾-nearest neighbors 𝑦1, 𝑦2, … , 𝑦𝑘 in the high
dimensional feature space with weights 𝑤𝑘𝑛𝑛(𝑥, 𝑦) as:

𝑤𝑘𝑛𝑛(𝑥, 𝑦) = 1 −
∑𝑁

𝑥=1 ∥ 𝐹𝑥 −
∑𝐾

𝑚=1 𝐹𝑦𝑚 ∥
𝜎

(23)

where 𝑁 is the total number of pixels in the image, and 𝜎 is the
least upper bound of ∑𝑁 ∥ 𝐹 −

∑𝐾 𝐹 ∥ to constraint the value
𝑥=1 𝑥 𝑚=1 𝑦𝑚
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Fig. 4. Illustration of transmission-map refinement using the graph model. (a) Tri-map replica. (b) Graph model before optimization. (c) Graph model after optimization. (d)
Filtered tri-map replica. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
of 𝑤(𝑥, 𝑦) in [0,1]. The refined transmission-map 𝑡(𝑥) is obtained by
minimizing the following cost function [40].

𝐸 = 𝜆
∑

𝑥𝜖𝜈

(

𝑡𝑥 − 𝑡𝑥
)2 +

𝑁
∑

𝑥=1

(

∑

𝑦𝜖𝑁𝑥

𝑤𝑥𝑦
(

𝑡𝑥 − 𝑡𝑥
)2
)

(24)

where 𝜈 is the set of definite foreground and background pixels, 𝑡 is
the estimated transmission-map (i.e. Tri-map). In Eq. (24), the first
term ensures that the refined transmission-map is consistent with the
constraint of estimated transmission-map, whereas the second term
ensures that neighboring pixels share similar transmission values, 𝜆 is
a parameter to keep the balance between the two terms. To facilitate
computation, Eq. (24) can be further rewritten in matrix form as:

𝐸 = 𝜆
(

𝑡 − 𝑡
)𝑇 𝛤

(

𝑡 − 𝑡
)

+ 𝑡𝑇𝐿𝑇𝐿𝑡 (25)

where,

𝐿𝑥𝑦 =

⎧

⎪

⎨

⎪

⎩

𝑤𝑥𝑥

−𝑤𝑥𝑦

0

if 𝑥 = 𝑦
if 𝑥 and 𝑦 are neighbors

otherwise

where 𝑤𝑥𝑥 =
∑

𝑦𝜖𝑁𝑥
𝑤𝑥𝑦, 𝛤 is a 𝑁 × 𝑁 diagonal matrix with 𝛤𝑥𝑥 = 1

if 𝑥 𝜖 𝜈, else 0. The solution to Eq. (25) can be given by solving the
following sparse linear system:

𝑡 =
(

𝐿𝑇𝐿 + 𝜆𝑈
)−1 𝑡 (26)

where 𝑈 is an identity matrix, 𝑡 is the estimated tri-map, and 𝜆
is a parameter which controls the smoothness of data term. Fig. 5
shows an example of graph-model based refinement. The irregular-
ities formed while estimating the transmission are suppressed and
smoothened out, effectively, which leads to the recovery of high-quality
transmission-map.

4.4. Recovery of scene radiance using color correction

Unlike terrestrial images, UAVs haze images usually suffer from
color-distortion due to their long distance from the ground and un-
favorable lightening conditions. The color-distortion severely affects
the visual quality of aerial images. Therefore, to solve this problem,
a color correction technique based on statistical approach is adopted
by modifying Eq. (11) as [42]:

𝐽 𝑐 (𝑥) =
𝐼𝑐 (𝑥) − (𝐴𝑐 − 𝛹 𝑐 (𝑥))

[max{𝑡(𝑥), 𝑡0}]𝛿
+ (𝐴𝑐 − 𝛹 𝑐 (𝑥)) (27)

𝛹 𝑐 (𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥[𝐼𝑐 (𝑥)] − 𝐼𝑐 (𝑥) (28)
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where (𝐴) is the estimated air-light, 𝑡(𝑥) is the filtered transmission-
map, 𝛹 𝑐 (𝑥) denotes the color difference value between the maximum
mean intensity and the mean intensity of red, green, and blue channel
of image (𝐼). In other words, due to the longer distance between the
camera and the scene, the offset for each color channel is subtracted
for the recovery of actual scene radiance. For avoiding division by zero,
the value of the transmission-map 𝑡(𝑥) is restricted by 𝑡0. An example
of radiance recovery using the proposed approach is shown in Fig. 5.

5. Experimental results

In this section, we examine the effectiveness of the proposed method
on both realistic [41,43,44] and synthetic dataset [45] and compare its
performance against state-of-the-art methods.

5.1. Datasets

The experiments of the proposed method are carried out on both
realistic and synthetic dataset. The real UAVs haze images are sourced
from the database of QUICK-BIRD satellite [41], PLEIADES satel-
lite [43], and USC-SIPI dataset [44]. The QUICK-BIRD and PLEIADES
satellite dataset contain a wide range of aerial images with a spatial
resolution of 5980 × 2774, 2624 × 1098, and 3535 × 1640 pixels
respectively, whereas the USC-SIPI dataset contains bluish-cast haze
images with a spatial resolution of 512 × 512, 1024 × 1024, and
2250 × 2250 pixels. In this paper, the UAVs test images are generated
from cropping different haze regions from the real dataset and resized
to 512 × 512. The synthetic haze images are sourced from RESIDE-𝛽
dataset [45]. In RESIDE-𝛽 dataset [45], several images with variable
haze thickness are synthesized using Eq. (1) by randomly chosen air-
light from [0.7, 1.0] and 𝛽 between [0.6, 1.8] since any value of 𝛽
beyond this range could lead to unrealistic haze (too thin or too heavy).

5.2. Parameter setting

The proposed dehazing scheme consists of few parameters and
constants. Therefore it is necessary to investigate the impact of those
parameters for transmission-map estimation, transmission-map refine-
ment, and radiance recovery. To evaluate the impact of patch-size (𝛺),
a set of experiments has been carried out using different values of this
parameter. The experimental results are shown in Fig. 3, where a small
patch-size (𝛺 = 5) leads to the under-estimation of transmission-map
(see Fig. 3(b)), while a large-patch (𝛺 = 21) leads to the over-
estimation of transmission-map (see Fig. 3(e)). It is important to note
that when the patch size is too small, the assumption of constant
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Fig. 5. An example of transmission-map refinement and radiance recovery using the proposed approach. (a) and (c) Filtered transmission map derived from images shown in
Fig. 3(d). (b) and (d) Final dehazing results.
Fig. 6. Qualitative comparison with other state-of-the-art methods on QUICK BIRD dataset [41]. (a) Satellite haze images. (b) Fu et al. [5] (c) Kwok et al. [11] (d) He et al. [13] (e)
Zhu et al. [20] (f) Meng et al. [23] (g) Cai et al. [25] (h) Zhang et al. [28] (i) Yang et al. [29] (j) Proposed method (Please zoom-in for better illustration of minor details). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
transmission becomes less appropriate. On the other hand, a large
patch-size, unnecessarily increases the computational time and makes
the halos-artifact stronger near depth edges. It can be seen in Fig. 3[(c)–
(d)], that the best estimation of foreground and background regions
is achieved for a medium patch-size. However, the parameters (𝛺)
are data driven, but (𝛺 = 15) is used for all results reported in this
paper. For tri-map refinement, the constants remain same irrespective
of the image under restoration and a fixed value of 𝛾 = 0.1, 𝐾 = 12,
𝜖 = 10−6, 𝜆 = 10−4 is used. Furthermore, the parameter 𝑡0 and 𝛿 in
Eq. (27) is fixed to 0.3 and 0.85 for fine detailing of dehazing effect.
For fair comparisons, we use the provided codes of state-of-the-art-
methods [5,11,13,20,23,25,28,29] and set the parameters optimal as
suggested by authors to generate the final dehazing results.

5.3. Qualitative comparison on real UAVs images

The qualitative comparison of proposed method with other state-
of-the-art methods on real UAVs images are shown in Figs. 6–8. For
qualitative evaluation, we randomly chose three realistic haze images
from each UAVs dataset, as shown in Figs. 6(a)–8(a). The dehazing
result of Fu et al. [5], Kwok et al. [11], He et al. [13], Zhu et al. [20],
Meng et al. [23], Cai et al. [25], Zhang et al. [28], and Yang et al. [29]
are given in Fig. 6[(b)–(i)] to Fig. 8[(b)–(i)], respectively. The results of
the proposed method are given in Figs. 6(j)–8(j). Among these results,
Cai et al. [25], Zhang et al. [28], and Yang et al. [29] methods are
based on deep learning.

The reader is urged to zoom into the results to view the images more
clearly in Figs. 6–8. Upon zooming, one can observe, most of the haze
effects are removed by [5,11,13,20,23,25,28], and [29], respectively.
However, visibility, colors, and details are not good enough. It can be
seen in Figs. 6(b)–8(b), that Fu et al. [5] results are over-saturated,
which makes the dehazed image appear darker (i.e., the color tone of
the river, airport ground, plants, roads appear bit dark for both QUICK-
BIRD [41] and PLEIADES dataset [43], whereas serious color-distortion
exist for the SIPI dataset [44]). It happens because Fu et al. [5]
method is based on the principle of histogram equalization, which has
an inherent problem of over-saturation. Kwok et al. [11] results in
Figs. 6(c)–8(c), are comparatively clear as the method removes the
7

haze effect and highlighted well the details of ground infrastructures.
Moreover, the bluish cast has been removed in the SIPI dataset [44]),
but flaws can be seen around some water regions (i.e., the color tone
of the water changed to dark).

He et al. [13] results, shown in Figs. 6(d)–8(d) are slightly over-
saturated, because of incorrect transmission and air-light estimation,
which is the key for efficient dehazing. Zhu et al. [20] produces
results similar to those of He et al. [13] in Fig. 6(e)–8(e). However,
colors are over-saturated, for example colors are bit dark in the QUICK
BIRD [41] and PLEIADES dataset [43], whereas the method fails to
unveil detail in USC-SIPI dataset [44]. As shown in Figs. 6(f)–8(f), Meng
et al. [23], dehazing results are satisfactory, and scene-information is
recovered well without any visual-artifact. However, by looking closer,
we find that there exist a thin layer of haze in the QUICK BIRD [41]
and PLEIADES dataset [43], and serious color-distortion exist for the
USC-SIPI dataset [44].

It can be observed from Fig. 6[(g)–(i)] to Fig. 8[(g)–(i)], that
learning based methods, such as [25,28], and [29] tends to either
over dehaze or under dehaze the image, making the results darker
or leaving haze residuals in the output. It can be evidenced by the
results in Figs. 6(g)–8(g), where Cai et al. [25] method tends to produce
dark regions in the QUICK BIRD [41] and PLEIADES dataset [43], and
leave some haze residuals in the USC-SIPI dataset [44]. It is easy to
notice that Zhang et al. [28] dehazing results in Figs. 6(h)–8(h), tends
to over-amplify the intensity and thus produces exaggerated contrast
and color-fringing artifacts in some regions (i.e., soil field in both
QUICK BIRD [41] and PLEIADES dataset [43] is difficult to visualize).
Likewise others, Zhang et al. [28] method cannot handle the problem
of atmospheric color-cast in USC-SIPI dataset [44] and results in color
fringing artifacts.

Our dehazing results in Figs. 6(j)–7(j) are closer to Yang et al. [29]
results. Though Yang’s method improve the contrast and visibility in
the QUICK BIRD [41] and PLEIADES dataset [43], it shows serious
color-distortion for the USC-SIPI dataset [44]. In contrast, our method
recovers the scene information in all three dataset [41,43,44]. It can
be seen in Figs. 6(j)–8(j) that restored images have more information,

and well-enhanced edges. Our method not only improves visibility by



Journal of Visual Communication and Image Representation 74 (2021) 102993S. Gautam et al.
Fig. 7. Qualitative comparison with other state-of-the-art methods on PLEIADES dataset [43]. (a) Satellite haze images. (b) Fu et al. [5] (c) Kwok et al. [11] (d) He et al. [13] (e) Zhu
et al. [20] (f) Meng et al. [23] (g) Cai et al. [25] (h) Zhang et al. [28] (i) Yang et al. [29] (j) Proposed method (Please zoom-in for better illustration of minor details). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 8. Qualitative comparison with other state-of-the-art methods on USC-SIPI dataset [44] (a) Satellite haze images. (b) Fu et al. [5] (c) Kwok et al. [11] (d) He et al. [13] (e) Zhu
et al. [20] (f) Meng et al. [23] (g) Cai et al. [25] (h) Zhang et al. [28] (i) Yang et al. [29] (j) Proposed method (Please zoom-in for better illustration of minor details). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
brightening the dark areas but also preserves the natural appearance,
which unveils more details.

5.4. Qualitative comparison on synthetic haze images

The qualitative evaluation of the proposed method with the other
state-of-the-art methods [5,11,13,20,23,25,28,29] is also tested on syn-
thetic haze images. Fig. 9(a) shows some synthetic haze images, which
are synthesized from clear images by randomly chosen air-light 𝐴 = 0.9
and 𝛽 = 1.8. However, these simulated haze images still have some
differences from real UAVs images. Fig. 9[(b)–(i)] shows the results of
Fu et al. [5], Kwok et al. [11], He et al. [13], Zhu et al. [20], Meng
et al. [23], Cai et al. [25], Zhang et al. [28] and Yang et al. [29],
respectively. The result of proposed method are given in Fig. 9(j) and
(k) shows the ground-truth for comparison. The reader is urged to zoom
into the marked regions in Fig. 9 to see the haze removal effect by each
method. It can be seen from the results in Figs. 9(b)–(c) that IE methods,
such as [5–11], fail to obtain the genuinely haze-free images and their
results contain haze residuals compared to ground truth images. It
happens because IE methods [5–11] are not primarily designed for
dehazing, and they usually fail under such hazy conditions.

On the contrary, the traditional prior based methods such as [13,
20], and [23] can effectively remove the haze effect. However, visi-
bility, colors, and brightness are not good enough, and their dehazing
results contain darkness and color-distortion compared to ground truth
images. As observed in Fig. 9(d), He et al. [13] method cannot handle
gloomy and white objects and tend to produce severe halo-artifacts and
color-distortion when the intensity of any bright object becomes similar
to the intensity of air-light (see the marked region for detail difference).
Zhu et al. [20], results are visually satisfactory, and there are no halo-
artifact. However, color distortion appears, especially in the third and
fourth image of Fig. 9(e) (i.e., the colors of a chandelier, table items,
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and paper turned to dark). It can be observed in Fig. 9(f) that Meng
et al. [23], produces naturally-looking results without sacrificing much
fidelity of the colors and textures.

Based on the deep-learning framework, Cai et al. [25] method
succeeded in dealing over-saturation problem. However, the dehazing
result in Fig. 9(g) still contains hazy residuals due to the imperfect
estimation of haze thickness at a distance. As shown in Fig. 9(h) Zhang
et al. [28] method improves contrast and unveil details via exagger-
ating the intensity. However, it produces considerable over-saturated
results by removing haze at the price of unrealistic visual artifact (for
instance marked region appears too brighter than it should be). Fig. 9(i)
shows that Yang et al. [29] results are the most competitive compared
to ground truth images. However, by looking closer, it can be observed
that slight color-distortion and over-enhanced regions exist (see the
chandelier, colors of table items in the third image and rear wall in
the fourth image). In contrast, the results of the proposed method are
neither over-enhanced nor under-enhanced, and even more natural and
detailed than the other results.

5.5. Quantitative comparison

To quantitatively evaluate the restoration efficacy of each compared
method, two full-reference image quality assessment metrics (FR-IQA),
namely, PSNR-HVS-M [46], and FSIM [47] have been used. The PSNR-
HVS-M [46] is an extension of commonly used PSNR that takes HVS
properties such as contrast sensitivity (CS) and visual masking (VM)
into account. The FSIM [47] is an improvement over SSIM by addition-
ally taking phase congruency (PC) and gradient magnitude (GM). Since
the restored images tend to have rich details than the original haze
images, it is considered that the higher the value of PSNR-HVS-M [46],
and FSIM [47] better is the efficacy.
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Fig. 9. Qualitative comparison with other state-of-the-art methods on RESIDE-𝛽 dataset [45]. (a) Synthetic haze images. (b) Fu et al. [5] (c) Kwok et al. [11] (d) He et al. [13] (e) Zhu
et al. [20] (f) Meng et al. [23] (g) Cai et al. [25] (h) Zhang et al. [28] (i) Yang et al. [29] (j) Proposed method (k) Ground truth (Please zoom-in for better illustration of minor details
in the marked region).
Table 1
Terrestrial image and UAVs image data-set.

Data-set [48] [49] [50] [51] Total

Sizes 6033 1204 800 2100 10137

Table 2 displays the average score of each method on synthetic
RESIDE-𝛽 dataset [45] with different haze level. In Table 1, three set of
synthetic haze image (light, medium, and dense) are simulated using
Eq. (1). In Table 1, last row corresponds to the average evaluation
values of the results shown in Fig. 9. The results depicts the quality of
the restoration directly. As shown in Table 1, learning based methods
such as Cai et al. [25], and Yang et al. [29] outperform earlier IE
methods [5]- [11] and traditional prior based IR methods [14,20],
and [23] in terms of both PSNR-HVS-M, and FSIM values, respectively.
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In Table 2, for light-haze, Cai et al. [25] stands out among the
compared methods in terms of both PSNR-HVS-M and FSIM values.
However, for the medium and dense haze, the results of Cai et al. [25]
becomes less consistent as there still remains a thin haze residual. The
proposed method shows competitive performance with Yang et al. [29]
for medium and dense haze, and obtains the highest score because
Yang’s method produces slightly over-saturated images, while the pro-
posed method does not. By given PSNR-HVS-M [46], and FSIM [47]
results for different haze level, it can be observed that the proposed
dehazing method works well and produces a natural result consistent
with human observation.

To showcase the computational complexity, the average run-time
comparison with other state-of-the-art methods is given in Table 3. The
hardware specification of the computing platform are PC with Intel®
CoreTM i7-3770 CPU@ 3.40 GHz, 3401 MHz, 4Core(s), 8GB RAM and
NVIDIA® GeForceTM GTX 1050 Ti. All methods are implemented in
Table 2
Quantitative comparison using FR-IQA metrics on synthetic reside-𝛽 data-set with different haze level.
𝛽 Metrics Fu et al.

[5]
Kwok et al.
[11]

He et al.
[14]

Zhu et al.
[20]

Meng et al.
[23]

Cai et al.
[25]

Zhang et al.
[28]

Yang et al.
[29]

Proposed

PSNR-HVS-M 15.35 13.10 15.72 17.58 16.35 21.06 13.87 17.86 18.00
𝛽 = [0.6, 0.9] FSIM 0.95 0.94 0.93 0.93 0.96 0.96 0.93 0.96 0.96

PSNR-HVS-M 12.80 10.66 14.95 17.22 14.13 17.24 13.66 17.67 17.92
𝛽 = [1.0, 1.4] FSIM 0.93 0.91 0.91 0.92 0.94 0.95 0.94 0.95 0.95

PSNR-HVS-M 11.49 9.44 14.36 15.66 12.74 14.98 10.72 16.46 17.01
𝛽 = [1.5, 1.8] FSIM 0.91 0.89 0.90 0.92 0.93 0.94 0.90 0.94 0.94
Table 3
Average run-time comparison with other state-of-the-art methods.

Methods Run-time (seconds) Conditions

Fu et al. [5] 0.77 Independent approach (It does not require any
time for air-light estimation, transmission-map estimation,
transmission-map refinement, and radiance recovery.)

Kwok et al. [11] 1.41 –

He et al. [14] 8.91 Took 0.02, 0.11, 8.74, 0.04 sec for each step.

Zhu et al. [20] 0.5 Took 0.02, 0.18, 0.29, 0.04 sec for each step.

Meng et al. [23] 4.99 Took 0.39, 0.11, 4.46, 0.03 sec for each step.

Cai et al. [25] 3.65 Took 0.02, 3.29, 0.31, 0.03 sec for each step.

Zhang et al. [28] 0.23 Jointly estimate the air-light, transmission-map, and scene radiance.

Yang et al. [29] 2.45 Jointly estimate the air-light, transmission-map, and scene radiance.

Proposed method 5.6 Took 0.02, 0.11, 5.44, 0.03 sec for each step
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Fig. 10. Failure examples of the proposed method. (a) and (b) Input image. (c) and (d) Output image.
MATLAB R2019a under 64-bit OS (Microsoft® WindowsTM 10 Pro),
except Zhang et al. [28], which uses Linux with PyTorch. The results
are obtained by running each method on RESIDE-𝛽 dataset [45] and
taking their average. It has been observed in Table 2 that Zhang
et al. [28] method is relatively fast, owing to the use of Linux and
PyTorch platform. The proposed method takes more time for the re-
finement of transmission-map, and it can be improved by programming
and using an advance computing device, such as a Graphics Processing
Unit (GPU).

5.6. Discussion

UAVs images are influenced to some extent by unfavorable atmo-
spheric conditions at the time of its acquisition. While the proposed
method can effectively mitigate the effects of uniform haze between the
UAVs camera and the ground, it still has some limitations. Firstly, the
proposed method does not work well for night-time haze as there is not
enough reflectance region in the captured image. Secondly, when there
is an inconsistent haze (i.e., when air-light density is higher on one side
and lower on the other side), the assumption of uniform air-light does
not hold, which leads to the under-estimation of haze concentration,
and makes the results hazy. Fig. 10 shows an examples, where the
proposed method fails to generate the clear image. This is mainly
because haze imaging model does not hold true for such situations.
To address the problem of night-haze, advanced imaging model such
as [52,53], and [54] need to be considered. However, the problem of
non-uniform haze is still a challenge and yet to be addressed by the
researchers.

6. Conclusion

In this paper, we propose an assumption based novel visibility
restoration scheme for single unmanned aerial vehicle system images.
The proposed method uses an assumption that actual radiance of an
aerial image is bounded within the range [𝐶0 ≤ 𝐽 𝑐 (𝑥) ≤ 𝐶1]. Based
on this assumption, boundary constraint utilizing the median filter
have been imposed on the color channel for the rough estimation
of transmission-map. Furthermore, a graph model inspired by the as-
sumption that pixels sharing the same appearance must be expected
to share the same transmission value has been used to refine the
transmission-map. The experimental results with other state-of-the-
art methods demonstrates that the proposed method produces high-
quality, detailed images with minimal artifact and gives the best score
in terms of full-reference image quality assessment metrics. For future
work, we intend to address the above mentioned limitations of the
proposed method.
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